首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   9篇
  国内免费   3篇
测绘学   8篇
大气科学   35篇
地球物理   94篇
地质学   118篇
海洋学   38篇
天文学   38篇
综合类   1篇
自然地理   37篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   9篇
  2016年   12篇
  2015年   13篇
  2014年   10篇
  2013年   20篇
  2012年   19篇
  2011年   18篇
  2010年   9篇
  2009年   10篇
  2008年   16篇
  2007年   8篇
  2006年   7篇
  2005年   13篇
  2004年   10篇
  2003年   9篇
  2002年   9篇
  2001年   10篇
  2000年   12篇
  1999年   4篇
  1998年   8篇
  1997年   11篇
  1995年   8篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1988年   3篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1967年   2篇
  1954年   4篇
  1953年   4篇
  1951年   3篇
  1950年   4篇
  1924年   2篇
  1913年   3篇
排序方式: 共有369条查询结果,搜索用时 578 毫秒
11.
12.
Soil freeze–thaw events have important implications for water resources, flood risk, land productivity, and climate change. A property of these phenomena is the relationship between unfrozen water content and sub-freezing temperature, known as the soil freezing characteristic curve (SFC). It is documented that this relationship exhibits hysteretic behaviour when frozen soil thaws, leading to the definition of the soil thawing characteristic curve (STC). Although explanations have been given for SFC/STC hysteresis, the effect that ‘scale’ – particularly ‘measurement scale’ – may have on these curves has received little attention. The most commonly used measurement scale metric is the ‘support’, which is the spatial (or temporal) unit within which the measured variable is integrated or soil volume sampled. We show (a) measurement support can influence the range and shape of the SFC and (b) hysteresis can be attributed, in part, to the support and location of the measurements comprising the SFC/STC. We simulated lab measured temperature, volumetric water content (VWC), and permittivity from soil samples undergoing freeze–thaw transitions using Hydrus-1D and a modified Dobson permittivity model. To assess the effect of measurement support and location on SFC/STC, we masked the simulated temperature and VWC/permittivity extent to match the instrument's support and location. By creating a detailed simulation of the intra- and inter-support variability associated with the penetration of a freezing front, we demonstrate how measurement support and location can influence the temperature range over which water freezing events are captured. We show it is possible to simulate hysteresis in homogenous media with purely geometric considerations, suggesting that SFC/STC hysteresis may be more of an apparent phenomenon than mechanistically real. Lastly, we develop an understanding of how the location and support of soil temperature and VWC/permittivity measurements influence the temperature range over which water freezing events are captured.  相似文献   
13.
Due to favorable conditions of preservation, sedimentary basins provide rich records of human behavior and its environmental context. The conditions for the preservation of archaeological material however vary between basin types (large, river‐fed or small, closed basins), while conditions also differ within a particular basin environment. The goal of this paper is to understand how the dynamics of a small postglacial basin such as Neumark‐Nord 2, a context that dominates the Eemian archaeological record, affected the archaeology situated at its basin margin. The approach used here is to correlate the archaeological record with reconstructions of patterns of deposition and the water conditions within the basin, using lithology, micromorphology, pollen, and macroremains from a transect running from the basin center to the margin. The results show that (1) find levels were exposed to overland flow‐induced winnowing, which vertically concentrated finds but did not cause significant transport, (2) find levels correspond to phases of increased water presence in the basin, and (3) lateral shifts in hominin activity areas may reflect adjustments in the water level. The research shows the importance of large‐scale archaeological excavations and a multidisciplinary sampling strategy that covers both the basin center and the margins, when studying postglacial basin localities like Neumark‐Nord 2.  相似文献   
14.
Alluvial fans develop their semi‐conical shape by quasi‐cyclic avulsions of their geomorphologically active sector from a fixed fan apex. On debris‐flow fans, these quasi‐cyclic avulsions are poorly understood, partly because physical scale experiments on the formation of fans have been limited largely to turbidite and fluvial fans and deltas. In this study, debris‐flow fans were experimentally created under constant extrinsic forcing, and autogenic sequences of backfilling, avulsion and channelization were observed. Backfilling, avulsion and channelization were gradual processes that required multiple successive debris‐flow events. Debris flows avulsed along preferential flow paths given by the balance between steepest descent and flow inertia. In the channelization phase, debris flows became progressively longer and narrower because momentum increasingly focused on the flow front as flow narrowed, resulting in longer run‐out and deeper channels. Backfilling commenced when debris flows reached their maximum possible length and channel depth, as defined by channel slope and debris‐flow volume and composition, after which they progressively shortened and widened until the entire channel was filled and avulsion was initiated. The terminus of deposition moved upstream because the frontal lobe deposits of previous debris flows created a low‐gradient zone forcing deposition. Consequently, the next debris flow was shorter which led to more in‐channel sedimentation, causing more overbank flow in the next debris flow and resulting in reduced momentum to the flow front and shorter runout. This topographic feedback is similar to the interaction between flow and mouth bars forcing backfilling and transitions from channelized to sheet flow in turbidite and fluvial fans and deltas. Debris‐flow avulsion cycles are governed by the same large‐scale topographic compensation that drives avulsion cycles on fluvial and turbidite fans, although the detailed processes are unique to debris‐flow fans. This novel result provides a basis for modelling of debris‐flow fans with applications in hazards and stratigraphy.  相似文献   
15.
Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the brittle star A. filiformis. The numerous burrows were intensively irrigated enhancing the benthic in situ O2 uptake by ~50 %, and inducing highly variable redox conditions and O2 distribution in the surface sediment as also documented by complementary laboratory-based planar optode measurements. The average benthic O2 exchange as derived by chamber incubations and the eddy covariance approach were similar (14.9 ± 2.5 and 13.1 ± 9.0 mmol m?2 day?1) providing confidence in the two measuring approaches. Moreover, the non-invasive eddy approach revealed a flow-dependent benthic O2 flux that was partly ascribed to enhanced ventilation of infauna burrows during periods of elevated flow rates. The ratio in exchange rates of ΣCO2 and O2 was close to unity, confirming that the O2 uptake was a good proxy for the benthic carbon mineralization in this setting. The infauna activity resulted in highly dynamic redox conditions that presumably facilitated an efficient degradation of both terrestrial and marine-derived organic material. The complex O2 dynamics of the burrow environment also concurrently stimulated nitrification and coupled denitrification rates making the sediment an efficient sink for bioavailable nitrogen. Furthermore, bioturbation mediated a high efflux of dissolved phosphorus and silicate. The study documents a high spatial and temporal variation in benthic solute exchange with important implications for benthic turnover of organic carbon and nutrients. However, more long-term in situ investigations with like approaches are required to fully understand how environmental events and spatio-temporal variations interrelate to the overall biogeochemical functioning of coastal sediments.  相似文献   
16.
Retrospective analysis of diversity and species composition of marine macroalgae of Hainan Island in the period 1933–1992 is presented in this paper. There are two extensive sample collection periods of benthic macroalgae: the early collection (EC) covers a period between the early 1930s and the 1980s before considerable urbanization and reef degradation took place and a late collection (LC) was performed in 1990/1992 during a phase of rapid urbanization. Analysis of data also including an earlier published inventory of green algae covering the same collection sites (Titlyanov et al. 2011a) revealed that the marine flora of the island comprises 426 taxa in total, with 59% red algae, 18% brown algae and 23% green algae. In total 59 species of red algae, 11 species of brown algae and 37 species of green algae sampled during the LC are new records for Hainan Island. Considerable floristic changes between EC and LC became evident. In the LC there were significantly more filamentous, tubular or fine blade-like, and often epiphytic, green and red algae with a high surface-to-volume ratio. Additionally a reduction of green, brown and red algal species with larger fleshy or foliose thalli and a low surface-to-volume ratio was observed. It is assumed that the changes reflect the degradation of the coral reef ecosystem around Hainan, which was damaged by human activities especially in the 1950s–1970s.  相似文献   
17.
Digital rock physics (DRP) is a rapidly evolving technology targeting fast turnaround times for repeatable core analysis and multi-physics simulation of rock properties. We develop and validate a rapid and scalable distributed-parallel single-phase pore-scale flow simulator for permeability estimation on real 3D pore-scale micro-CT images using a novel variant of the lattice Boltzmann method (LBM). The LBM code implementation is designed to take maximum advantage of distributed computing on multiple general-purpose graphics processing units (GPGPUs). We describe and extensively test the distributed parallel implementation of an innovative LBM algorithm for simulating flow in pore-scale media based on the multiple-relaxation-time (MRT) model that utilizes a precise treatment of body force. While the individual components of the resulting simulator can be separately found in various references, our novel contributions are (1) the integration of all of the mathematical and high-performance computing components together with a highly optimized code implementation and (2) the delivery of quantitative results with the simulator in terms of robustness, accuracy, and computational efficiency for a variety of flow geometries including various types of real rock images. We report on extensive validations of the simulator in terms of accuracy and provide near-ideal distributed parallel scalability results on large pore-scale image volumes that were largely computationally inaccessible prior to our implementation. We validate the accuracy of the MRT-LBM simulator on model geometries with analytical solutions. Permeability estimation results are then provided on large 3D binary microstructures including a sphere pack and rocks from various sandstone and carbonate formations. We quantify the scalability behavior of the distributed parallel implementation of MRT-LBM as a function of model type/size and the number of utilized GPGPUs for a panoply of permeability estimation problems.  相似文献   
18.
Tong  Xin  Illman  Walter A.  Berg  Steven J.  Luo  Ning 《Hydrogeology Journal》2021,29(5):1999-2000
Hydrogeology Journal - A Correction to this paper has been published: https://doi.org/10.1007/s10040-021-02351-x  相似文献   
19.
Mathematical Geosciences - A data-driven automatic well planner procedure is implemented to develop complex well trajectories by efficiently adapting to near-well reservoir properties and geometry....  相似文献   
20.
The geomorphology, lithology and chronostratigraphy of extensive, late Pleistocene inland and river dune sands, aeolian sand sheets (‘cover sands’) and loess deposits of periglacial origin in northwestern Europe are well known. However, the idea that some of these aeolian sediments result from niveo-aeolian processes is still an open question, as no diagnostic sedimentary features have yet been reported. Moreover, actual niveo-aeolian sediments and related denivation forms, reported from various cold-climate regions, are not suitable analogues. Recent observations in active dune fields in northwestern Alaska indicate that interstratification of wind-driven snow and sand preferentially occurs on slip faces of transverse, barchanoid or parabolic dune ridges. Annual denivation forms develop: e.g. snow ramparts, sinkholes, snow hummocks, snow meltwater fans and tensional cracks. The surface consists of a cracked wet sand layer with a dimpled surface and spongy structure. Although the preservation potential of these features is low in this specific case, similar features may be observed in ancient sediments elsewhere and provide useful palaeoclimatic indicators. The niveo-aeolian concept should therefore not specifically be related to late Pleistocene cover sand deposition in northwestern Europe, as previously assumed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号